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NUMERICAL PREDICTION OF PERIODIC VORTEX SHEDDING 
IN SUBSONIC AND TRANSONIC TURBINE CASCADE FLOWS 

C. MENSlNK 
Yon Kannan Inrtitute for Fluid l$namics, Waterloose Steenwg 72, 8-1640 Sint-Genesius-Rode, Belgium 

SUMMARY 
Periodic vortex shedding at the trailing edge of a turbine cascade has been investigated numerically for a subsonic 
and a transonic cascade flow. The numerical investigation was carried out by a finite volume multiblock code, 
solving the 2D compressible Reynolds-averaged Navier-Stokes equations on a set of non-overlapping grid blocks 
that are connected in a conservative way. Comparisons are made with experimental results previously obtained by 
Sieverding and Heinemann. 
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1. INTRODUCTION 

The numerical simulation of 2D compressible flows through cascades can be carried out on a physical 
domain that is discretized either in a structured or in an unstructured way. Structured grids contain a 
regular pattern of co-ordinates and connectivities in which the relative position of grid points is defined 
logically as a function of the structure of the grid. Unstructured grids do not have this logical 
connectivity and need additional information to define the relative position of grid points. 
Both discretization methods have their advantages and disadvantages. Unstructured grids easily allow 

addition of new and removal of old grid points. This makes unstructured grids suitable for complex 
domains and easily allows adaptivity of the mesh towards gradients in the flow field. On the other hand, 
a constant reference to the connectivity matrix makes a solution on an unstructured mesh expensive and 
memoryconsuming. Furthermore, solving viscous flows and implementing turbulence models in 
boundry layer regions is less straightforward because of the lack of orthogonality of the mesh in these 
regions. Structured grids, on the other hand, can be made very orthogonal in those regions and do not 
need a reference to an external description of the connectivity pattern. However, grid adaptivity is not as 
easy as for unstructured grids and also complex domains are much more difficult to discretize with 
structured grids. 

With this version of the multiblock method, developed by Mensink and Deconinck,' the main 
drawbacks of the structured grid approach are relieved and its strong properties are saved. The method 
aims at an improvement in the quality of the physical domain discretization at low computational cost. 
This paper summarizes the method's characteristics and advantages and provides a brief description of 
the additional information required by the solver. The computational part of the multiblock method is 
based on an upwind finite volume discretization using the fluxdifference-splitting technique developed 
by Roe2 for the flux computation and the variable extrapolation technique proposed by Van Lee? for 
second-order space accuracy. An explicit Runge-Kutta time integration method is used4 in order to 
obtain a time-accurate flow solution. 
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detail trailing edge 

Figure 1. Multiblock mesh for viscous flow computation 

The numerical results presented in this paper are obtained for a subsonic and a transonic flow through 
a turbine cascade, described by Sieverding el al.’ For a second-order space-accurate, fourth-order time- 
accurate scheme a steady state solution could not be obtained. In accordance with experimental 
observations, the results showed a periodic vortex shedding at the trailing edge. The numerical results 
are compared with the experimental results obtained by Sieverding and Heinemad for similar turbine 
cascade flows. 

2. COMPUTATIONAL METHOD 

This variant of the multiblock method solves the modelling flow equations on a set of non-overlapping 
structured grid blocks that are connected in a conservative way. Grid line continuity over the block 
boundaries is not required, which easily allows local (block) refinement. Elliptic, hyperbolic and 
algebraically generated grid blocks can be combined, partitioned and refined without adaptations having 
to be made in the code. Special attention to the treatment of hanging nodes is not required as long as 
these nodes are part of one or more blocks, which is always the case. The data structure for block 
boundary connections assures a correct treatment of these nodes, as will be explained in one of the 
following sections. 

In the discretization of domains for viscous flow computations the multiblock method can lead to an 
effective reduction of the computational cost, since the fine mesh required for an accurate representation 
of the boundary layer can now be restricted to the viscous layer, while the part of the domain dominated 
by a convective flow can be discretized by a much coarser mesh (see Figure 1). In this way grid points 
can be saved. Furthermore, the multiblock method is well suited for parallel computations on a 
multiprocessor machine, as has been shown by Mensink and Deconinck.’ 

As in the unstructured grid approach, a connectivity array is used to establish the block connection. 
However, the data structure needed to describe this block connection is only a fraction of the data 
structure needed for fully unstructured grids, since only the block boundary c o ~ e c t i o n ~  are to be 
described. The data structure includes the block numbers of the interfacing blocks, the indices of the 
cells adjacent to every cell wall interface, the cell wall interface lengths and a boundary-type 
specification number (Figure 2). 
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Figure 2. Construction of connectivity array 

Modelling$ow equations 

The equations that are used to model a viscous flow through a turbine cascade are the 2D 
compressible Reynolds-averaged time-dependent Navier-Stokes equations. In conservative form they 
are given by 

au aF ac aR as 
a t & + & +  
-+-+-=-+--. 

In equation (l), U is the timedependent solution vector and F and G are the inviscid flux vectors given 
bY 

where p is the density, u and v are the velocity components in the x- and the ydirection respectively, p is 
the pressure, E is the total energy and His  the total enthalpy. Assuming a perfect gas, the total energy is 
given by 

0 

R=[ tz ), S =  

-q* + ?nu + TFV 

R and S are the viscous flux vectors in the x- and the ydirection respectively, given by 

0 

7v 

7YY 

-qy + TWV + TVU 

In equation (4) the viscous stress terms are given by 
4av 2au 

aT aT 
ax qy = -37 qx = -u-, 

where p is the molecular viscosity and K is the thermal conductivity. 
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The inviscid flux vectors in equation (2) are determined by an upwind finite volume method with cell- 
centred unknowns, using the fluxdifference-splitting technique developed by Roe.' Second-order space 
accuracy is obtained by variable extrapolation, as proposed by Van Leer.3 

The velocity and temperature gradients in equations ( 5 )  and (6) are computed by a discretization of 
Green's theorem. As shown in Figure 3, this discretization uses the cell-centred variables at Nw, NE, SE 
and SW and the grid co-ordinates at N, E, S and W in order to compute the velocity and temperature 
gradients on the cell vertices C, where they are stored. The gradients are used in both the computation of 
viscous fluxes (4) and the turbulence model. 

Inviscid flux computation acmss block boundaries 

The block boundary treatment is carried out in a consistent way by simply extending the flux 
computation in the interior of the domain. Inside the domain the flux computation for an interior finite 
volume cell is carried out by computing the flux contributions from the four neighbouring cells, i.e. by a 
flux balance across its four adjacent cell walls. At the block boundaries (Figure 4) the flux computation 
is extended towards all adjacent cell walls. This might include contributions from one or more cells in 
the connecting block(+ As an example in Figure 4, a flux balance between cell A in block n and cell B 
in block m provides the flux contribution to cell A (and B) at cell wall interface k. The other flux 
contributions to cell A will come from a flux balance over block boundary interfaces k - 1 and k +  1 

Figure 4. Flux computation across block boundaries 
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and from the interior neighbouring cells of A in block n. In this way a first-order-accurate flux 
computation can be obtained assuring conservation. 

Second-order accuracy is obtained by applymg the variable extrapolation method of Van Leer,3 using 
the flux values of cells A and C in block n on one side and those of cells B and D on the other side, in 
order to obtain a flux balance across block boundary interface k. 

For a second-order flux computation across cell interface AC, one flux contribution is to be 
extrapolated from a fictitious cell in block m. Its value is obtained by means of a piecewise linear 
interpolation based on all cell wall interfaces adjacent to the cell concerned k - 1, k and k +  1 in the 
case presented in Figure 4. 

Viscous flux computation acmss block boundaries 

Using the stencil shown in Figure 3, the viscous fluxes across the block boundaries can be determined 
in the same way as is done for the interior of the domain. Since all gradients are stored in the cell 
vertices, they will also be available in the nodes on the block boundaries. 

For all cell wall interfaces the gradients in the two nodes at both ends of the interface are averaged in 
order to evaluate the viscous flux across this cell wall interface. This implies that for regular or 
continuous block boundaries no additional information from the connected block is needed, since the 
gradients in these block boundary nodes were already computed with information from the connecting 
block by applying the stencil shown in Figure 3 at the block boundaries. This stencil also ensures that 
the gradient values stored in the block boundary nodes are the same for both blocks adjacent to this 
block boundary. 

For irregular or discontinuous block boundaries such as those shown in Figure 4, some of the 
gradients belong to the block that is updated (e.g. block n )  and others to the connecting block (e.g. block 
m). Therefore the information from the connectivity array is needed to discern which node from which 
block has to be taken in order to average the gradient and obtain the viscous flux across the cell wall 
interface defined by the two nodes concerned. 

Turbulence and transition prediction 

law: 
In the cascade flow computations the laminar part of the flow viscosity is prescribed by the Sutherland 

T3/2 
p = 1-45 x 

T +  110' (7) 

For turbulent flows the eddy viscosity concept is followed, i.e. the viscosity is split into a laminar part, 
determined by the Sutherland law, and a turbulent part, obtained by means of the Baldwin-Lomax 
turbulence model.' Although this turbulence model does not allow a satisfying simulation of the large 
vortical shedding motions downstream of the trailing edge because of its general weakness in dealing 
with transport and diffusion of turbulence, it does provide satisfactory results in predicting the 
behaviour of thin attached turbulent shear layers close to the blade walls. Since the purpose of the 
work described in this paper was to investigate the appearance of periodic vortex-shedding phenomena 
as such, the turbulence model was considered to be satisfactory for the time being. The model's 
simplicity and low computational cost have shown to be advantageous in a multiblock context, where it 
can easily be implemented in a complex block- structured environment. 

The location of transition is prescribed by means of the Reynolds number based on the momentum 
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thickness 8. This Reynolds number is related to the freestream turbulence level Tu by 

Correlation (8) has been proposed by Mayleg for turbine cascade flows. 
Ree,, = 400 Tu-~~'. (8) 

Time integmtion 

Jameson et ~ 1 . ~  A fourth-order-accurate time integration was obtained by taking 
The time integration is performed by an explicit four-step Runge-Kutta method, as introduced by 

a1 =+, a2 =:, a3 = 5 ,  a., = 1. (9) 1 

Local time stepping was switched off in order to allow a time-accurate viscous flow computation. The 
convergence was examined by means of the mot mean square of the s u m  of the density residuals in all N 
cells: 

Residual smoothing was used to speed up the convergence. 

Boundary conditions and block boundary treatment 

The physical boundary conditions for subsonic and transonic turbine cascade flows are given by the 
total pressure, total temperature and inlet flow angle at the inlet of the domain. At the outlet of the 
domain the static pressure is fixed. For the viscous flow computations, no-slip conditions are combined 
with the assumption that the normal temperature g d i e n t  at the wall is zero. As a numerical boundary 
condition, it is assumed that in boundary layers the normal pressure w e n t  at the wall can be 
neglected. 

Periodic boundary conditions are not provided explicitly, since in the multiblock approach the 
periodic upper and lower cascade boundaries are coupled automatically by means of the connectivity 
-Y. 

For an inviscid flux computation across the block boundary the cell-centred solution vectors situated 
on both sides of the block boundary are required. For a viscous flux computation the gradients at the cell 
vertices on the block boundary are required as well. All information needed to determine these values is 
found in the connectivity array. The boundary type number in this array indicates whether a boundary is 
a physical boundary or an internal block boundary. 

Summarizing, the action to be taken at the block boundaries is defined as follows. A boundary is 
either a physical boundary, where physical and/or numerical boundary conditions are applied, or an 
interior block boundary, in which case the cellcentred solution vectors and gradients on the cell vertices 
are to be stored in a buffer. This buffer is either to be communicated between the blocks concerned 
(distributed memory machine) or to be used as a common memory buffer (shared memory machine), as 
described in more detail in other publications.'o 

3. NUMERICAL RESULTS 

Subsonic turbine cascade pow 

As mentioned in Section 1, the multiblock method aims at an effective reduction of computational 
cost in the discretization of domains for viscous flow computations. An accurate representation of the 
boundary layer can be restricted to the viscous layer in the vicinity of the blade, while the part of the 
domain dominated by a convective flow can be discretized by a much coarser mesh. 



PERIODIC VORTEX SHEDDING IN TURBINE CASCADES 887 

(X/C-)  
Figure 5 .  Rediction of transition locations 

This idea is moulded in the two-block grid configuration shown in Figure 1. A fine hyperbolic C-grid 
(360 x 30 grid points) is swept around the blade profile and coupled to a coarser smoothed algebraic 
grid for the inviscid part of the flow (248 x 8 grid points). The fine grid's minimum distance in terms of 
universal wall co-ordinate y+ was approximately 0.8- 0.9 in the separation region on the suction side. At 
this location there were 12 grid cells to cover the region up to ay' of 20. The maximum cell aspect ratio 
in the grid is 49. From flat plate boundary layer computations'o this was found to be the maximum value 
avoiding oscillations in the numerical solution. 

In order to parallelize the flow computation, the fine grid was partitioned into four blocks of 90 x 30 
grid points. Together with the inviscid block, the five blocks were distributed among the five available 
processors of an Alliant FX/8. 

The boundary conditions were derived from the experimental settings for which measurements have 
been carried out.' For the subsonic case of MZ,& = 0.70 the inlet conditions are provided by fixing the 
total pressure at Pol = 150,000 Pa, the total temperature at To, = 278 K, the flow angle at aI  =O" and 
the turbulence level at Tu = 1 per cent. At the outlet the static pressure is fixed at Pz = 108,139 Pa. 
These conditions resulted in a Reynolds number based on chord c and freestream outlet velocity U of 

In a first computation using the first-order Roe scheme, the turbulence and transition models were 
switched off in order to simulate a laminar flow through the cascade. This was carried out to obtain 
information on the transition location as modelled by the Reynolds number based on the momentum 
thickness in equation (8). The resulting evolution of Re0 with the reduced axial chord distance x/cm is 
shown in Figure 5.  One can observe a rapid increase in Re0 after 65 per cent-70 per cent of the axial 
chord on the suction side and at the boundary layer separation point at x/c= = 0.96 on the pressure side. 
Following the transition model with Tu = 1 per cent, equation (8) predicts the transition at Re0 = 400. 
This means, as shown in Figure 5 ,  that transition is expected at x/cm = 0.70 on the suction side and at 
x/c,  = 0-96 on the pressure side. 

The values for the transition location were used to switch on the turbulence model in a first-order 
turbulent flow computation, of which the convergence histoty, obtained after 10,OOO iterations, is shown 
in Figure 6(a). 

With the converged first-order-accurate solution as initial solution, a second-order space-accurate 
computation was carried out using the Roe scheme in combination with fourth-order-accurate Rung+ 
Kutta time integration. This computation could only be carried out when switching off the local time 
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Figure 6.  Convergence history: (a) first-odm turbulent; (b) second-order turbulent 

stepping. The time-accurate solution thus obtained did, however, not converge, as can clearly be seen in 
Figure 6(b), where the convergence results obtained after 2000 Runge-Kutta time steps are shown. 

A further time-accurate investigation was carried out by monitoring the solution every 50 time steps. 
As a result of this investigation, Figure 7 shows the evolution of a vortex-shedding cycle by means of 
static pressure isolines that are predicted in the trailing edge region after every 500 time steps. Time to 
refers to the second-order-accurate solution after 2000 time steps as obtained before. It marks the 
beginning of the time-accurate investigation. After approximately 2400 time steps the structure of the 
original situation at to is found again and the periodic vortex shedding starts its next cycle. 

The periodic character of the flow is also confirmed by looking at the base pressure variations at the 
trailing edge. In Figure 8,12 locations are indicated where the static pressure has been monitored during 
the time integration. Figure 9(a) shows the time variations of the static pressure during one periodic 
cycle for the six numbered locations in Figure 8. The six curves show a sinusoidal behaviour of the 
pressure, with a weakening of the amplitude towards the centre of the trailing edge. Averaged over one 
periodic cycle, the subsonic pressure distribution over the trailing edge is shown in Figure 9@). 

Tmnsonic turbine cascade flow 

The transonic turbine cascade flow computation was carried out on the same grid as shown in Figure 
1, with an exit Mach number Mzsi. = 1.00. The inlet conditions for this case are the same as for the 
subsonic case. The static pressure at the outlet is again derived from the isentropic exit Mach number: 
P2=79,242 Pa. The corresponding Reynolds number based on chord and freestream velocity was 
found to be 

Re2 = 1.8 x lo6. 

The transonic flow computation was started with a first-order-accurate solution. The transition point 
was again fixed at x/c,  = 0.70 on the suction side and at x/c ,  = 0.96 on the pressure side. After 2000 
iterations performed with the second-order Roe scheme, the solution was again denoted to and the time- 
accurate investigation was started. The solution was monitored every 200 time steps. The periodic 
vortex-shedding phenomena were again encountered, but now the periodicity was found after 
approximately 1800 time steps, as can be observed from the static pressure isolines shown in Figure 
10. Notice how the shocks on the pressure and suction sides are appearing and disappearing in a periodic 
way as well. The shock on the pressure side seems to be strongest between to + 800Af and to + 9OOAt, 
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LO to + 500At 

Lo + 1500At t o  + 2000At t o  + 2400Af 
Figure 7. Subsonic periodic vortex shedding: static pressure isolines 

whereas the shock on the suction side has its maximum strength at to + 1800At. Both shocks were 
resolved on a distance of two grid cells. 

For the six numbered locations in Figure 8 the pressure variations in time are shown in Figure 1 I (a). 
One can see that the periodic variation is more asymmetric than in the case of the subsonic flow. Also, 
the amplitudes are bigger, whereas the frequency of the periodic variation has increased. Figure 1 l(b) 
shows the local pressure variations along the trailing edge, as averaged over one periodic cycle. 

Figure 8. Trailing edge monitoring locations 
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Figure 9. Subsonic base pressure variations: (a) time variations; @) local bave pressure variations (averaged over one cycle) 

.Lo + 200A.L 

.Lo + 600Af t o  + 8OOAt l o  + 1OOOAt 

Figure 10a. Transonic periodic vortex shedding: static pressure isolines 



PERIODIC VORTEX SHEDDING IN TURBINE CASCADES 89 1 

.I. .I. I. .. 
t o  + 1200AL t e  + 1400At 

t o  + 1600A.1 to  + 18OOAL 

Figure lob. Transonic periodic vortex shedding: static pmsurc isolines 
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Figure 12. Isentropic Mach number distribution: (a) subsonic flow; (b) transonic flow 

4. COMPARISON WITH EXPERIMENTAL RESULTS 

Subsonic turbine cascade flow 

A first comparison with experimental results for this turbine cascade flow computation concerns the 
isentropic blade Mach number distribution. Figure 12(a) shows the computed isentropic Mach number 
in comparison with the experimental results obtained by Sieverding e? al.' 

A way to characterize periodic time-dependent flow phenomena is to define the Strouhal number 

f .L S = - - ,  
U 

where f is the frequency of the periodic phenomenon and L and U are respectively defined by a 
characteristic or reference length and a characteristic or reference velocity. In turbine cascade flows the 
characteristic length is associated with the trailing edge thickness and for the characteristic velocity the 
freestream velocity at the outlet is taken as a reference: 

f .?e S=-. 
u2.is 

In the case of the subsonic periodic vortex shedding presented in Figure 8, the periodicity is obtained 
after 2400 time steps. With a global four-stage Runge-Kutta time step A? = 1.79 x lo-* s, a trailing 
edge thickness re = 1 -87 mm and a freestream velocity Uz,is = 222 m s-' , the Strouhal number (14) for 
the periodic vortex shedding becomes 

S = (L) = ( te ) = 0.196. 
T42,tS 2400At. U2,is 

This value agrees well with the experimental results obtained by Sieverding and Heinetnam6 In their 
publication they investigated three turbine cascade blades with different geometrical characteristics (see 
Table I) and different suction-side velocity distributions. For the three blades the vortex-shedding 
frequency represented by the Strouhal number (1 4) was measured in relation to Mach and Reynolds 
numbers and in relation to the boundary layer state on the blade surfaces. 

= 0.8) are shown for the three different blades 
described in Table I. Comparing the Mach number distributions of the investigated blade (Figures 12(a) 
and 12@)) with those shown in Figure 13(a), one can observe that this distribution resembles most 
closely the Mach number distribution of the front-loaded blade B. They also have a zero inlet angle in 
common. The Reynolds number for this blade at M2,is = 0.8 was found to be Re2 = 1.1 x lo6. 

In Figure 13(a) the Mach number distributions 
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Table I. Blade characteristics6 
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0.1 

0.1 

0.1 

0.1 

A 

- 

- 

- 

- 

~ 

B 
- 

C 

Inlet angle f12 30" 
Gauging angle f12 (arccos O/g) 65" 

0.75 
0.04 

Chord length c 66 
0" 

Pitch to chord ratio g/c 
Trailing edge thickness d/c to chord ratio 

Rear SS turning angle E 

0" 30" 
65.1" 67-8" 
0.72 0.71 
0446 0.045 
64.5 100/60* 
7" 20" 

Chord length c = 100 mm at VKI and 60 mm at DFVLR-Ci6ttinga. Note: and 8 2  arc referred to axial direction. 

The experimental results obtained by Sieverdiig and Heinemann for blade B are shown in Figure 
13(b), where the measured Strouhal number is plotted versus the isentropic exit Mach number. For a 
Mach number M2,is = 0.7 the measured value of S = 0.195 agrees very well with the computed results. 
For blades A and C the measured Strouhal numbers at M2,is = 0.7 were 0.196 and 0-241 respectively. 
The n m w  frequency bandwidth obtained near Mz,iS=O-7 (Figure 13@)) indicated a turbulent 
boundary layer separation on both the pressure and suction sides of the trailing edge. For lower 
isentropic Mach numbers the state of the separating boundary layer on the pressure side was found to be 
either laminar or turbulent depending on the use of a tripwire that forces transition on the pressure side 
of the blade. As was found by the authors, the effect of this boundary layer state seemed to be more 
important than the effect of a change in Mach number or a change in Reynolds number. 

Examining again the results in Figure 7, the pressure isolines seem to indicate a much stronger 
activity on the pressure side than on the suction side. Experimental confirmation of this observation can 
be found in publications by Lawaczek and Heinemann" and Han and Cox.'' Lawaczek and Heinemann 
measured a stronger vortex intensity in the vortex row from the pressure side compared with the one 
from the suction side. By means of smoke visualization, Han and Cox found much sharper and more 
well- defined vortex contours on the pressure side, indicating a stronger vortex shedding from the 
pressure side. 

In order to evaluate the correctness of the numerical turbulent boundary layer predictions on the 
suction side, the momentum thickness evolution on this side of the blade has been compared with the 
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Figure 13. Vortcx-shadding expcrimentS by Sieverding and Heinemarm:6 (a) iscnlmpic Mach number diatributim; (b) measured 
Strouhal numbcrs 
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Figure 14. Boundary layer momentum thickness: (a) subsonic flow; @) transonic flow 

prediction by the integral boundary layer method for compressible turbulent boundary layers with 
arbitrary pressure  gradient^.'^ As input for this integral boundary layer method, the experimentally 
obtained Mach number distribution (Figure 12) was taken. The numerical value of the momentum 
thickness was obtained by integrating over the boundary layer in the direction normal to the blade 
surface. Only at the base where the grid lacks orthogonality was this found to be unreliable (see 
overshoots in Figure 14), also because of the separated state of the boundary layer at this location. 

Figure 1qa) shows the subsonic comparison between the computed boundary layer momentum 
thickness on the suction side at ro + 2400At (curve 1)  and the integral value (curve 2) as predicted by the 
integral boundary layer method. Notice that curve 2 is associated with a turbulent boundary layer over 
the total suction-side surface length, whereas for curve 1 the boundary layer is only turbulent 
downstream of the transition point at x/cm = 0-70. It can be observed that in both cases the growth 
of the momentum thickness starts at x/c= = 0.70, where a strong adverse pressure gradient is felt, as can 
be seen from the velocity distribution on the suction side in Figure 12(a) at the equivalent location 
x/c = 0.30. Although the levels of the two results are the same at this point, 8 grows faster in the 
numerical simulation than predicted by the integral method, with a difference of 20 per cent at the end of 
the suction side. 

Tmmonic turbine cascade flow 

The computed isentropic Mach number distribution along the blade is shown in comparison with the 
experimental results in Figure 12(b). For the transonic case with a periodicity obtained after 1800 time 
steps with again a global four-stage Runge-Kutta time step of Ar = 1 -79 x lo-* s, a trailing edge 
thickness te = 1.87 mm and a freestream velocity of U2,is = 294 m s-' , the Strouhal number defined by 
(14) becomes 

a result which was also found for the subsonic case in (1 5).  In the experimental results obtained by 
Sieverding and Heinemam: only subsonic Mach number variations are investigated. However, from 
Figure 13(b) one can see that the Strouhal number has a tendency to remain constant when the Mach 
number is fbrther increased, which would be in agreement with the computational results. Again it 
seems to be the state of the boundary layer which determines the character of the periodic vortex 
shedding, rather than the Mach number or the Reynolds number. 
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One difference from the subsonic flow results is the pressure distribution in the wake region near the 
blade. The pressure isolines in Figure 10 indicate a strong influence of the shocks that are appearhg and 
disappearing on the pressure and suction sides of the trailing edge. Therefore the transonic vortex 
shedding seems to give much stronger base pressure variations as can be observed when comparing 
Figures 9 and 11. 

Figure 14@) shows the transonic comparison between the computed boundary layer momentum 
thickness on the suction side at to + 1800Ar (curve 1) and the integral value (curve 2) as predicted by the 
integral boundary layer method from the experimentally obtained Mach number distribution. Again 
curve 2 is associated with a turbulent boundary layer over the total suction-side surface length, whereas 
for curve 1 the boundary layer is only turbulent downstream ofx/c, = 0.70. One can observe an almost 
perfect agreement downstream of x/c, = 0.73, where the influence of the shock results in a strong 
adverse pressure gnubent, as can be seen from the velocity distribution on the suction side in Figure 
12@) at the equivalent location x/c = 0.30. Upstream of this point the computed results seemed to be 
mfluenced by a strong acceleration on the suction side, which reduces the momentum thickness, 
whereas this was not taken into account by the integral method. 

5. CONCLUSIONS 

Viscous flow simulations have been carried out by means of a 2D finite volume multiblock code for a 
subsonic and a transonic turbine cascade flow. For a second-order space-accurate, fourth-order time- 
accurate flow computation a steady state solution could not be obtained. In accordance with 
experimental observations, the results showed a periodic vortex shedding at the trailing edge instead. 
The transonic flow computations showed a periodic vortex shedding with an alternating behaviour 
concerning the appearance and disappearance of shocks on both the pressure and suction sides of the 
trailing edge. The Strouhal numbers for the subsonic and transonic cases were found to be almost 
identical and agreed well with experimental results for a similar turbine cascade blade. 

On the pressure side the transition point was found to be located at the beginning of the high- 
curvature region at the trailing edge. On the suction side the transition location could be related to the 
point where the adverse pressure gradient starts (subsonic case) or where the shock is impinging 
(transonic case). From this point on, the boundary layer momentum thickness started to grow rapidly. A 
comparison of the computed momentum thickness with the momentum thickness predicted by a 
boundary layer integral method for compressible turbulent flows showed reasonable agreement for the 
subsonic case and rather good agreemeat for the transonic case. 

Although the periodic vortex-shedding phenomena as such could be predicted by this multiblock 
code, a more reliable turbulence model which includes transport and diffusion of turbulence has to be 
implemented in order to investigate numerically the large vortical motions downstream of the trailing 
edge. 
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M 

APPENDIX: NOMENCLATURE 

chord 
total energy 
frequency 
inviscid flux vectors 
total enthalpy 
cell wall interfhce index 
block numbers 
Mach number 
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P 
PO 
4 
Re 
Rt?S 
%S 
S 
t 
te 
T 
Tu 

U 
U 

U 

V 

Y+ 

C. MENSINK 

(static) pressure 
total pressure 
heat flux 
Reynolds number 
Residual (density) 
viscous flux vectors 
Strouhal number 
time 
trailing edge thickness 
temperature, periodic time 
turbulence level ( per cent) 
velocity in xdirection 
freestream velocity 
solution vector 
velocity in y-direction 
universal wall co-ordinate 

Greek letters 

RK coefficients, flow angle 
compressibility 
momentum thickness 
thermal conductivity 
molecular viscosity 
kinematic viscosity 
specific mass 
shear stress 

Subscripts 

1 inlet 
2 outlet 
ax axial 
is isentropic 
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